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0. INTRODUCTION

Let K,, be a generalization of the Jackson kernel, namely,
K1) = 4, singn't/2)/sin(/2)) .
where n’ = |n/p] + 1 (here [x] is the largest integer <x), and the constant 4,,.
is chosen so that

I x

k4

() dt=1, n,p=1,2,.

np

|1]. We put

knp(u) = K{n/Z}p({)* U= Sin(t/z)’

~1 -7 (01)
o, ! :J | kup(e) du = (1/2) | c08(4/2) K (1) d 2 1.

Then p, 'k,, is even, non-negative, and a polynomial in u. Let C{/{ be the
class of all continuous real functions on [, and let 17, be the subclass of C|/|
consisting of all algebraic polynomials of degree n or less. If I =|a,blc
(0, 1), we consider a certain operator with the kernel p, 'k,,, which maps
C|!] into I1,,. To this end we extend f € C|/] to a function F € C|R], where
R = (—oo, o), which satisfies the following conditions (1)—(4):

(1) It is 2-periodic.

(2) 1Itis even.

(3) Letdy=(1/2)min{a, 1 —b} and d,=36,/(r + 1) (r=1,2...). Then
F(x)=0for x€|0,26,—d,] V|1 —28,+d,,1].
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(4) F is sufficiently smooth, for instance, if f** € Lip(1; C|a, b]), then
F% € Lip(1; C[0, 1]), or
w(Fi Ry < Myw,(fih),  0<h<(b—a)r, 0.2)

where w,(g; -) is the rth modulus of smoothness of g, and M, is a constant
depending on r and f.

In this case we put
LplFi5)=p, 2 0 () () [ P b — s
=0, ¥ > "1yt (_)f‘j Y B+ ju)k, Jwydu,  (0.3)

(=x)/i

where p is the smallest integer >(r 4+ 2)/2, that is,

r+2 if ris odd

2p—1=
P r+1 if r is even.

We can determine the saturation class of the operator /,,, (Corollary 2.1).
However, our methods are also applicable to other kinds of operators, for
example, those of Korovkin type [2-4]. Let ¢ be a nonnegative, even, and
continuous function on [—c, c|, decreasing on [0, ¢] and such that ¢(0) =1
and 0 < () < 1 for 0 <t < c. In this case we define

k() =o"(u), n=1,2,.. 0.4)

Let f € C{I], where I={a,b] =(0,c). By the same method as (0.2) we
extend f to F € C[R] which is 2c-periodic and even. For such a function F
we define the operator

K, (F; x) = p,,z( 1)“‘() ) [ F) ko (0x — ) d

j=1

=3 ()

J

J,(Jc x)/j

F(x + ju) k() du 0.5)
where

. zf k,w)du, n=12,...
—C

For simplicity we consider only the case ¢ = 1.
In this paper we consider a certain class of operators which contains the
above, and we determine the saturation class of such operators. Let k, be
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even, positive, and belonging to C"(0, 1|, and let I = |a, b| < (0. 1). For each
S EC[I] we consider a function F & C[R] which is extended by method
(0.2). Then we define a linear operator

Kb =, X C0 (0 () P ks

"‘ . ry Ui
=p, N (1) ( )J F(x + ju) k(1) du, (0.6)

« x)/Jj

j=l \J

where
-1

po = kwydu, n=12..
-1

which maps C|I| into itself. For this operator K,,(F) we make the following
assumptions: There is a positive number 4 such that

0 p,lsk,@)du=p,| 2k (u)ydu=o0n ") as n- o for each
0 < d < 1, where

>,(A\'rJrl if r is odd,

r - .
Zr if ris even.

(I1) For some sequence {n;| of natural numbers and some constant
c,#0

lim n}/*G(x) — K,{(G;x)} =c,g""(x)  foreach g€ C} "'
Jooo

where
Ci=1g;,g€C*0,1],g=00n |0,a| U |b, L]}

(Il)  For some O < a L r*,
~1
Pu| uk(u)du=0(n ")
0

as n— oo.

THEOREM A. Assume L, 11, and 111 For f € C|I| we have
(1) “f_Knr(F)HC[a,b]:0(nir’u)$f€Hr‘f [
@) IS = KneEllcapp = On ") = £ 71 € Lip(1; C|1]),
3) S P EeLip(lCUD = f — KuF)lepam = O "),
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From Theorem A we can obtain a characterization of the class

Lip,(a; C[I]) consisting of all functions f with w,(f;h) < O(h®), under the
following:

Assumption (IV),
NKL?(F)HC[O,” < Mr nF"Cw,ll nrM’

where M, is a constant depending on r.

TueoreM B. Letf€ C[I] and 0 <a <r. If we assume 1, 11l and 1V, we
have

If - Knr(F)”C[a,b] = O(n-a/.l) <> f € Lip,(a; C|I]).

These theorems are also true for || ||, , 1 < p < o0, see Section 3.

1. PROOF OF THE THEOREMS
For the proof of Theorem A we need

LEmMMA 1.1. For each f€ C|I]| consider the extended function F
constructed by method (0.2). Then we have

K, (Fix)=p, fl E (1! (;) F(x + ju) k,(u) du + o(n=""*),

—1j=1
uniformly on the interval |9y, 1 — ,}, and
K (Fix)= O(H—r*M);

uniformly on the interval [0, 8,] or [1 —d,, 1], as n— co.

Proaf. For d, < x < 1~ 4, we have (—x)/j < (—d,)/r and d, < (j — x)/j.
By Assumption I

P (J + J) |FGx + ju)l k() ds < 2 [ Fllcgo,ny P L k() du

=o(n=""*).

Thus we have the first formula.
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Let 0 x{dyor 1 —d; < x< 1, then we have

im0 ;
Flx + ju)k,(u)du’

o xgi
2o, b, AP X :
:W T )F(x+ju}k,,(u)duj
W B :

ST Y P
.1
2 HF”("w.uJA k(u) du.
If we use Assumption I again, we have the second formula. Q.E.D.

Proof of Theorem A. (1) Let us assume that

lim n™ Y f(x) — K, (Fix)} =0

LRI

uniformly on |a, b]. For each g € C; ~ ' we have

.
lim | " YF(x)— K, {(F:x)} G(x)dx = 0.

L SR
We put
R -1
[=]  {F(x) =K, (F.x)] G(x)dx

N
1 by 1 sy "‘ ) 7L

= Fx)Gxydx —p,| G N (=1 { ) —
“t“)u (X) (Y) * g ‘t‘su (Y} i~l( ) (J}( J )

XiFu)k( ¥ )dud\

Then we have

frn‘;: (%)J:;N G(X) F(H)R ( ; ) du dx

("") | F) {5” "Gk, ("‘J‘.“ ) dx du

~m F(u)‘u P Gl + o) ke (1) di du.
TSy wdid

Here, (0, —u)j> 0o/} — 120, — 1. (1 =6,—u)j<(l—3y)i<

640412 8
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and (1 — 8y —u)/j — (6 — u)/j = (1 —29,)/j. Thus, for u with (1 —d, — u) <
—0, or 6, < (6, — u)/j, we have

J-(l—ao—u)/j

Pn G(u + jt) k,(t) dt

1
<NGlcro o | ole)d

(50‘11)/.1.

=o(n="").
By the definition of F we have

Fu)=0 on [dy — jo,, b + j6,] U [1 — 64— jb,, 1 — 6 + jb,].
(1.2)

Thus we have

1-89-jd, (1-8¢—u)/j .

L;=p, j Flu) G(u + jo) k,(6) dt du + o(n™"").
8o+J3, (8g—u)/i

But we see (d,—u)/j<—9, and (1 —J,—u)/j>46,. By Assumption I and

(1.2) we have

1-80—Jjd, J-wy/j
Ly=p, j Fa) [ Glu+ jtyk,(1) dr du

S0+, (—w/i

Al—

— | Fw |

(J—u)
3y (-

/i
. G(u + Jt) kn(t) dt du + O(n*”/l).

u)/j

Consequently, we have
1-8p .
1= " F@){Gu) ~ K, (G u)} du+ o(n "),
L2
By (1.1) and Assumption II,

(l F(u)e,G"(u) du=0.

Y0
Thus we have
femn,. on |a, b|.

(2) From the weak* compactness there are a sequence {#n,} of natural
numbers and a function # € L _[a, b] such that

1
lim | ny"MF(x)—K
k- 0

(F;x)} G(x) dx

nyr

1
:J h(x)G(x)dx  forall geCy*.
0
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In this case. by using same method as the proof of (1) we have

lim jAl n;“”‘F(t){G(t) - K, (G 1)} dt = \Al h(t) G(t) de.

koo v S0

By Assumption I,
N -1
| F(t)e,G"(ydi=| H,.(t)G" (1) dl.
i\ hRt]

where H,. is a r*th integral of 2. Thus we have

e, F—H,.ell, | onlab] or FUNo)=¢, 'ht)  ae

»

Consequently, we see
S e Lip(1: Cli ).

Using Lemma 1.1, for a < x < b we have
N

F() = K, (Fix)=p, | ALFx) k) du+on "),
: [

From F" =" € Lip(1; C[0, 1]) we see
ATF(xy=u"" "F" U(x)+ u" h(x. u).
where [A(x, u)] < M for all x, u (see Lemma 2.2, below). By Assumption 111,

-1 .1

pul  ALF) k) du | <M p, | u ky)du=0(n """
R | ! . 1
Q.E.D.

To complete the proof of Theorem B we need two lemmas. They are well
known.

LEMMA 1.2. Let

~n/2r ni2r

Fo(x)=(n/r) " | |

-m)/2r UM/ 2r

XN () Rl sy e ) duy - d
x—-l .]

then we have

(D) [F(x) = F ()l < wiFin).
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(2) for |nl<é,,
FOx)=0, |k—x|<8, i=0,1,2, k=0,%1,42,..,

(3) Jfor n|<9,,
KD (F i %)= K, (F )5 %),
and
@) |FReN <M~ "wF;n),

where M, is a constant depending on r.

LEMMA 1.3 [5]. Let 2 be monotonely increasing on [0, c|. Then Q(t) =
O(t%), t > 0+, if for some O <a <randall h,t € [0,c|

Qh) < M{r® + (B/1) Q1))
Now, it is easy to show Theorem B.
Proof of Theorem B. (=) We use Assumption IV and Lemma 1.2. For
as<x<b

[ ARSCOl < |34 S — K (F5 M|
n/2r h/2r

+ j J K, F ) +u + - +u)du, - du,
(—h)/2r (—m/2r

L2 = K (EN + B/ KGE = Fps N A 1K Fs Il
<2M,n R+ () (M, | F = F, ||+ ML FS )
2'M o n ="t 4 (Bfr) (M n"w (F3 n) + Min~"w(F;n)}
KM n=" + (0" h) w(F;n ')}
with 7 =n""* Thus, for 0 < < 1 we have
w(fs ) < Mt + (h/0)" w(f5 D)}
From Lemma 1.3,

w3 h) = O(h®).

(<) By Lemma 1.1 and Assumption III,

P~ KoF: ) =p, | 4LF00) k) d + 0fn™")

- 0(1)j1 uek,(u)du +o(n=""*)=0(n-*"*). Q.E.D.
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2. APPLICATIONS

As mentioned in Section 0, our theorems are applicable to Jackson- or
Korovkin-type operators. First, we give concrete examples of Korovkin-type
operators.

ExaMPLES 1. Let 7> 0.
o(t)y=w(™) for ¢>0.

(1) o@)=e """
Weierstrass kernel [6] if # = 2.
Picard kernel if n = 1.
Bui, Fedorov, Cervakov kernel |7|if n=1/k, k = 1.2

2) et)=1—1t".n>0.
Landau kernel (8] if = 2.
Mamedov kernel [9] if 7=2k. k=1.2.....

(3) o)=1/(1+37 ,c,t™). where the all coefficients ¢, are
positive.
Mirakian kernel |[10] if y=2 and ¢, = 1/2°* 'k k=1, 2.....
EXAMPLE 2. () = cos™(t/2).

de la Vallee~Poussin kernel |11] if 5= 2

The following lemmas are fundamental.

LemMa 2.1. If g€ C"'' we have

a urg(r) +a“,u lg(r»lb(x)
47 g(x) = 3 ta,, u" g T (x) + ()l if'r is odd.
vhoau'g "V (xY+ b, ut g () + h(x, u) if v is even.

Here, h(x, u) is a continuous function and

lim A(x,u)=0 uniformly in x.
u-+0

and

" T
(r+p)‘ ar+p: }_ (71), ,(J.)jr.pw pfo 1,2,

J=0

i(—l)’“’(;)f”“- 7=0.1

i o

I

(r+@tb,.,
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Proof. When r is odd we put

(@, 4" 14, g(x) —a,u'g" (x) —a,. ,u g (x)
h(x, u) = —a, ,u g (x)) if u#0,

0 if u=0.
In this case, from the Cauchy theorem

ling h(x,u) = liné {r+2a, "
u—- f Sl

X 3 Zr (__1)r—jjr+2g(r+2)(x + Jll) _ (r + 2)! ar+.2g(r+2)(x)€
j=0

={r+2la,,} g x)

r CF
XX () - e 2,
i=0 J
= 0.
Similarly, for even r we obtain the second equality. Q.E.D.

LEMMA 2.2. Let 0<a.
(1) If [a] # a, for g with g1V € Lip(a — [a]; C[0, 1]) we have
A1g(x) = u'*lg @V (x) + uh(x, u).
(2) If la]=a, for g with g'== P € Lip(1; C[0, 1]) we have
AT 'g(x) = u*" g (x) + uh(x, u).

Here, h{x,u) is continuous except for u=0 and uniformly bounded,
[h(xe, )| < M for all x, u.
Proof. (1) We put

u° ALa] x _u[a]g((a])x if u=20
= |1 470 @i it u=o

For u # 0, we see

| hx, )| = |u {45 g(x) — u'*1g "V ()}

u

u
Th fo L LMl +uy + -+ agy) — g0 (x)]

X dul . dli(a]
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KMy | oo |y e ) duy - dug

where M, is a constant.

(2) TThis follows by the same method as (1). Q.E.D.

The next lemma follows by |1. Chap. 4. Sect. 3|.

LEMma 2.3,

in i risodd
o~ Myl
() Ay X0 VRN if riseven.
where n’ = |n/p|+ 1.

(2) For 0 a<2p-2 we have

N
pnt "k,,n( wyduxn °.
s 0

If we use the three lemmas mentioned above, we obtain the main lemma
with respect to the kernel (0.1).
LEMMA 2.4.  The kernel k,, satisfies Conditions I ~ 1V.
Proof. Let 4 = 1.
(I) By Lemma 2.3(1),

B e d

Pr knp(u)du:pn knp(u) du x}'[nl’x'llzo(n r')'
Y .

(I) By Lemma 2.3(2),

-1
pol k@) duxn . k=0,1,..2p -2
"0

From

e (rl=2p—2 i risodd
T lr=2p-2 if  riseven.
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there is a sequence {n;} of natural numbers and a constant ¢, # 0 depending
on r such that

1
- r’k > —_ 7
}1}3}10 nj p,,jJ’Q Uk, (1) du=c;.

Let r be odd. By Lemma 2.1, for g € Cj'*' we have

llm nj"d{G(x) —'In-pr(G;x)}
J—=00 J
1
= lim n}"p, [ 47G(x)k,,,(u) du
jo ilg §

1
=lim ', [ @, w8 )+ apou T hG )} k() d
J 0 J—1
=a,,,¢, 8" Vx) + 1.

But, for any ¢ > 0 there is a ¢ > 0 such that

. Syr+1
11 < 26,3 Jim n7*'p,, | Ky d

1
+2a,,, sup |h(x, u)| lim #}*'p, j k,, ,(u) du
X Joe0 Tis
< 2(a,.;cl + e
Thus, 7, =0 and we have

lim 7] {G(x) =1, ,,(G; x)} = ¢, 877 (x).
=00

This also follows when r is even.

(III) This follows by Lemma 2.3(2).
(IV) Inductively, the following is shown:

(507 ) i = 2160572~ X 7,0 Kifo 0

i=1
where u = sin(¢/2) and
a polynomial of degree r — 1 or less
with valuable sin(#/2) if risodd,

{cos(¢/2)} - {a polynomial of degree (r — 2) or less
with valuable sin(z/2)} if  riseven.

Tri(t ) =
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ForO<x<land §,Kuj—0,wesee (x—u)j<l—0,and (x —u)j>
—1 +6,. In this case we have

RYATEL s—uy | r
’ <dxr ) (J_) J(s“ F(u) k""( J ) du ‘ S Mr/' Wﬁ H('IU.II .

Thus we have
D Fs ) <M E ey 1" Q.E.D.

Thus we obtain the following results.

CoroLLARY 2.1. For f &€ Cla. b| we have

(1) ”/A [npr(F)H(‘la.h] = 0(”7 I)é fe nr‘ 1
(2) “./ - 1npr(F)”(‘la.h] = O(H "')Qf(r' Y € Llp(l' Clll)

CoroLLARY 2.2. Let f € Cla,b| and 0 < a <r. Then we have
Hfi [npr(F)”(‘lu.h] = O(” “ ) had -/E Lipr(a: C|I|)
In the next place we consider the application to a Korovkin-type operator.

Lemma 2.5 [3]|. Let ¢ be a non-negative and decreasing function on
[0.¢c]. 0(0)=1.0<Lpx)<1if0<x<c, and

lim {1 —o(x)f/x! =d. (2.2)
where A and d are positive numbers. Then, for every >0 and n=1, 2.....

we have
B(/l,,b’)(nd) B+l (2d)7 (8+1):4 e 2ndnt

-1
< o) di
0

S G

<A@ B)nd) B0 g e i,

where A(A, §) and B(A, ) are positive constants depending on A and f3, and i
is a certain positive constant. Thus,

; |ﬁ] o™ (1) dt s/gi(: o"(1) dtg ~n 84,

0
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LEMMA 2.6. Let ¢ satisfy condition (2.2) and the condition
\d/du) o) <Mu'~',  0<u<l, (23)

where M is a constant. Then condition 1V is satisfied.

Proof. We use the lemma 2.5.
()l (G )or (5]
‘< >r u wa(x+Ju) ( dr> ) du

(—-x)/j
( 4 )(p(u)

1
<M Flletony 7o, | u@ V" ") du
0

2J7r{|FHC[0,11Pn[ nfro"="(u)

<M, || Fllero.ny n', Q.E.D.

Condition (2.2) is satisfied for all of the examples mentioned in the
beginning of this section. Further, if we put =2k, k=1, 2,.., in the
examples we see that they satisfy condition (2.3), too. For the operators of
this kind we obtain the following main lemma.

LeEmMMA 2.7. If a Korovkin-type operator satisfies condition (2.2), it
satisfies also Conditions 1-111. Further, if that operator also satisfies (2.3) it
satisfies Condition 1V.

Proof. (I) For 0o, <1,

o] Kb di=p, | k) du 0(p,0"(9)
— 0(1){2/(1 - 5,)Ho)p(G 1"

(I) Using Lemma 2.1 and 2.5 we see that Condition II is satisfied.
Its proof is same as Lemma 2.4(II).

(III) This follows from Lemma 2.5.
(IV) This follows from Lemma 2.6. Q.E.D.

By Lemma 2.7 we have
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CoROLLARY 2.3. Let a Korovkin-tvpe kernel (0.4) satisfy Condition
(2.2). Then. for /€ Cla, b| and the operator {0.5) we have

{l) “Jf - Knr(F}”(‘{ss.b! - 0(" " J) K /e H:" i
(2) I = Kyl Fllgjam = Oln "y« f7 1€ Lip(1: Cl1|).

CororLary 2.4. Let a Korovkin-type kernel (0.4) satisfy Condition
(2.2) and (2.3). Then, for / € Cla.b| and the operator (0.5) we obtain that
JorO<a<r

“‘f - Knr(]“)\éc'ltl,fxl = O(” ot ) had / = Lip,,((ll C‘“ } ).

30L,, 1< p< oo, CASE,

For each /'€ L,|/| we consider a function F € L ,[0. 1]. which is extended
by the same methods as the uniform case. However. we have to change
Condition (4) in (0.2) by the condition; {4’). F is sufficiently smooth. for
instance, if /(x}= H(x)a.e. on |a,b), where H'") € Lip(1: L, |a. b|). there is
a function H, such that F(x)=H,(x)ae. on |0,1|. and H¥ €&
Lip(1: L,]0. 1}). or there is a constant M,, depending on » and / such that
W (F )y <M w, (fh), O <h< (b—a)/r. where w,(g:-) is the integral
modulus of smoothness of order r for g. Of course. we consider the L -norm
through this section.

By the same lines as the uniform case we obtain the following theorems.
The proofs are omitted.

Tueorem C.  [f we assume L 1l and 1L for f € L |1} we have

(O N =K Bl jam=o0tn © ) = 2Pe ] L fix)=Px)ac.
2) 1S~ KWy o =0tn * s IHELL O] f(x) = Hix)
ae., H" V€ Lip(1: L]0, 1)),

where g € L]0, 1] means g € L [0, 1].

THeOREM D. Let f€ L, || and 0 <« <r. If we assume 1. 11 and IV,
where we change the uniform-norm in 1V by the L -norm. we have

‘x.f - Knr(F)“I,',,fa,bj = 0(” Q‘.l) <> ./‘ e Lipr(a: 1"‘;)‘“‘ b“
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